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HGBER: Heterogeneous Graph Neural Network
With Bidirectional Encoding Representation

Yanbei Liu™, Lianxi Fan, Xiao Wang

Abstract— Heterogeneous graphs with multiple types of nodes
and link relationships are ubiquitous in many real-world appli-
cations. Heterogeneous graph neural networks (HGNNs) as an
efficient technique have shown superior capacity of dealing with
heterogeneous graphs. Existing HGNNs usually define multiple
meta-paths in a heterogeneous graph to capture the composite
relations and guide neighbor selection. However, these models
only consider the simple relationships (i.e., concatenation or
linear superposition) between different meta-paths, ignoring
more general or complex relationships. In this article, we pro-
pose a novel unsupervised framework termed Heterogeneous
Graph neural network with bidirectional encoding representation
(HGBER) to learn comprehensive node representations. Specif-
ically, the contrastive forward encoding is firstly performed to
extract node representations on a set of meta-specific graphs
corresponding to meta-paths. We then introduce the reversed
encoding for the degradation process from the final node rep-
resentations to each single meta-specific node representations.
Moreover, to learn structure-preserving node representations,
we further utilize a self-training module to discover the opti-
mal node distribution through iterative optimization. Extensive
experiments on five open public datasets show that the proposed
HGBER model outperforms the state-of-the-art HGNNSs baselines
by 0.8%-8.4% in terms of accuracy on most datasets in various
downstream tasks.
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I. INTRODUCTION

ETEROGENEOUS graphs, which are capable of mod-

eling various types of nodes and diverse interactions
between them, also known as heterogeneous information
network, have become ubiquitous in real-world scenarios,
ranging from bibliographic networks [1], social networks [2]
to biological networks [3]. For example, as shown in Fig. 1,
a bibliographic network (i.e., academic network) contains three
types of nodes (author, paper, and venue) and two types
of edges (author-write-paper and conference-publish-paper).
Meanwhile, these basic relations can be further derived for
more complex semantics over the heterogeneous graph (e.g.,
author-write-paper-conference-publish-paper). It has been well
recognized that heterogeneous graphs are powerful models
that are able to embrace rich semantics and structural infor-
mation in real world data. Recently, heterogeneous graph
neural networks (HGNNSs) have received considerable research
attention, because they are able to effectively combine the
mechanism of message passing with complex heterogeneity,
so that the complex structures and rich semantics can be
well captured. So far, HGNNs have significantly promoted
the development of heterogeneous network analysis toward
real-world applications, e.g., recommend system [4], security
system [5], and information retrieval [6].

Most of the existing HGNNs typically utilize multiple
meta-paths to capture composite relations and guide neigh-
bor selection. The meta-path [7] is an ordered sequence
of node types and edge types defined on the network
model that describes the composite relationship between the
involved node types. As shown in Fig. 1, Author-Paper-Author
(APA) and Author-Paper-Venue-Paper-Author (APVPA) are
meta-paths describing two different relations among authors.
The APA meta-path associates two coauthors, while the
APVPA meta-path associates two authors who publish papers
in the same venue. Therefore, we can view a meta-path as
high-order proximity between nodes. The meta-path-based
HGNNs can be roughly grouped into concatenation-based
methods [8], [9] and attention-based methods [10], [11],
[12]. For the convenience of description, we refer to node
representations learned from a single meta-specific graph
and the union of all meta-specific graphs as meta-level and
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Fig. 1. Tllustrative example of a heterogeneous citation network. (a) It consists
of three types of nodes and two types of link relationships (heterogeneous
citation network). (b) Author a; and its neighbors based on two meta-paths,
Author-Paper-Author (APA) and Author-Paper-Venue-Paper-Author (APVPA)
(meta-path-based node neighbors).

semantic-level node representations, respectively. Specifically,
the concatenation-based methods first learn meta-level node
representations for each meta-path and then capture the final
node representations by directly concatenating semantic infor-
mation of meta-paths. Such methods ignore the underlying
association between different meta-paths. The attention-based
methods mainly adopt the attention mechanism to assign dif-
ferent weights for each meta-level representation, and linearly
superimpose to learn final node representations. Such methods
can learn node representations with better flexibility, yet they
are prone to preserve only the linear relationship between
semantic-level and meta-level node representations [10].

Although these meta-path-based methods have achieved
promising results, there are still some limitations. The first
one is that it is difficult to explore the inherent associa-
tion due to the complex and diverse relationships between
semantic-level node representations and meta-level node rep-
resentations. These existing models only consider the simple
concatenation or linear superposition relationships between
them. However, their relationships may be complex or non-
linear, i.e., the change of semantic-level node representations
does not correspond with constant change in meta-level node
representations, but with more complex change than in a
linear relationship. The second one is that node representations
obtained by concatenation-based and attention-based methods
are not concise, but redundant. For example, as shown in
Fig. 1, the scholar a; has the same neighbor a3 via APA
and APVPA meta-paths, so there is overlapping information
between two meta-level node representations learned by these
methods. The third limitation is that most meta-path based
methods acquire the semantic-level node representations in the
supervised setting, so they need additional labeled data to train
the model.

To this end, we propose heterogeneous graph neural net-
work with bidirectional encoding representation (HGBER),
an unsupervised neural network model that addresses the
above challenges to learn node representations. Differ-
ent from traditional meta-path based heterogeneous graph
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representation learning methods, which linearly aggregate
meta-level node representations to learn semantic-level node
representations, the proposed method can learn the optimal
semantic-level node representations by the bidirectional encod-
ing networks, which introduces a neural network model to
explore more general relationships between semantic-level
node representations and meta-level node representations.
Furthermore, we refine semantic-level node representations
to discover the optimal node distribution by a self-training
module. Finally, extensive experiments are conducted to show
the superior performance of HGBER compared with the
state-of-the-art baselines. The contributions of our work are
summarized as follows.

1) We propose a general framework for heterogeneous
graph representation learning by aggregating various
meta-paths, which is capable of exploring nonlinear
or more complex relationships among meta-level node
representations in an unsupervised setting.

2) We propose HGBER, a novel heterogeneous graph
neural network method that handles graph heterogeneity
by utilizing bidirectional encoding representation, which
can learn concise meta-level node representations and
comprehensive semantic-level node representations for
the heterogeneous graph. Moreover, the bidirectional
encoding representation and self-training modules are
jointly designed to acquire optimal node representations.

3) We conduct extensive experiments to evaluate the perfor-
mance of HGBER in terms of the representation capacity
and generalization ability on five public datasets. The
results show its superiority by comparing with the state-
of-the-art methods.

The remainder of this article is organized as follows.
Section II presents the related work. Related concept, includ-
ing graph representation learning and related content of
heterogeneous graph, are briefly reviewed in Section III.
Details of our proposed approach are presented in Section I'V.
In Section V, we present experimental results that demonstrate
the effectiveness of our model on a variety of real-world
datasets. Conclusions are drawn in Section VI.

II. RELATED WORK

The related study includes graph neural networks and het-
erogeneous graph learning as follows.

A. Graph Neural Networks

Recently, with the success of deep learning, graph neural
networks (GNNs) [13] have gained a lot of attention in
graph representation learning. Different from previous graph
embedding models, the main idea of GNNs is to aggre-
gate the feature information from node’s local neighbors
via neural networks, which can combine the node attribute
information and corresponding structural information to learn
its new representations. Most successful GNNs are based
on supervised learning including GCN [14], GAT [15],
GraphRNN [16], AdaGCN [17], AP-GCN [18], DigGCN [19],
and AS-GCN [20]. The unsupervised learning GNNs can
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be mainly divided into two categories, i.e., random walk-
based [21], [22], [23], [24], [25] and mutual information-
based [26], [27].

B. Heterogeneous Graph Learning

To handle the heterogeneity of graphs, some methods have
been proposed in recent years. Metapath2vec [7] formalizes
the random walks based on meta-paths to obtain heterogeneous
neighborhoods of a node and utilizes Skip-gram model to learn
the network structure. HIN2Vec [28] learns the embedding
vectors of nodes and meta-paths simultaneously while per-
forming prediction tasks. From the perspective of attributed
graphs, SHINE [29] utilizes multiple deep auto-encoders to
extract users highly nonlinear representations while preserving
the structure of original networks. HAN [10] leverages the
attention mechanism in heterogeneous graph learning to learn
the semantic information from multiple meta-paths defined
connections. Based on meta-level and semantic-level structure,
MAGNN [30] takes intermediate nodes of meta-paths into
account. GTN [31] proposes to automatically identify useful
connections. HGT [32] is designed for web-scale heteroge-
neous networks. In unsupervised setting, HetGNN [33] sam-
ples a fixed size of neighbors, and fuses their features by using
LSTMs. Inspired by the mutual information-based learning
model, HDGI [12] effectively learns node representations by
maximizing the local-global mutual information. NSHE [34]
focuses on network schema, and preserves pairwise and net-
work schema proximity simultaneously. HeCo [35] employs
cross-view (network schema view and meta-path view) con-
trastive mechanism to collaboratively learn high-level node
embeddings. However, the above methods cannot fully exploit
the general relationships among meta-paths to learn compre-
hensive node representations.

III. PRELIMINARY

In this section, we first formalize the heterogeneous graph
representation learning problem, and then summarize main
notations involved in this article.

Definition 1 (Graph Representation Learning): Given a
homogeneous graph G = (V, E, X), where V is a node set, E
is a link set, and X denotes a matrix of node attributes. Graph
representation learning aims to learn low-dimensional node
feature matrix H = {h;, ho, ..., hy} € RV*¢ with d <« N
that integrates the node attributes and structural information,
where N is the number of nodes and d is the dimension of
node features.

Definition 2 (Heterogeneous Graph): A heterogeneous
graph is denoted as G = (V, &, X), which consists of a node
set V, a link set £ and a node attribute matrix. Respectively,
each v € V and e € £ are associated with their type mapping
functions 7 (v) : V — Ty and ¢(e) : & — Tg, where Ty
and T¢ represent the type sets of vertices and edges satisfying
|Ty| + |Tg| > 2. It is a homogeneous graph with the same
node and edge types when |Ty| = 1 and |T¢| = 1. As shown
in Fig. 1, three node types of paper, author, and venue and two
types of link relationships constitute a heterogeneous graph.
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TABLE I
MAIN NOTATIONS USED IN THIS ARTICLE

Notation Meaning
Gg=W,&X) Heterogeneous graph
O, i Og - - Pi> Ok+1  Meta-paths
G =(V,E,X) Homogeneous graph

{G1,G2--- Gk}
M ={Mi,My, -, Mg}
H = {HLHQ,. : .,HK}
H c RV*d Semantic-level representation
Sk Representation vector in DGI

Meta-specific graphs
Meta-level representation set

Reversed reconstruction feature set

Definition 3 (Meta-Relation): In a heterogeneous graph,
each edge is related to its meta-relation. For example, <
7(s), ¢(e), T(t) > represents a meta-relation for an edge
e = (s, 1) linked from node s to node 7. Moreover, the graph
schema Tg = (Ty, T¢) of heterogeneous graph G consists of
all meta-relations, where the node types 7y denotes node set
and edge types Ty is edge set.

Definition 4 (Meta-Path): Meta-path scheme is defined as a
sequence of meta-relations over graph schema. More details,

a meta-path denotes as O, il 0y, ..., LLY Ok.1, Where
P = P+ P,+- - -+ P is a composite relation between objects
0; — Og.. For example, in ACM dataset,' the meta-path
PAP represents Paper Author Paper relation. To facilitate
analysis, we can decompose the original heterogeneous graph
into multiple homogeneous meta-specific graphs denoted as
{G1, G, ..., Gk} according to the meta-paths. For the node
set ¥V with K nodes, it has the corresponding representation in
each meta-specific graph, and the composed representation set
is denoted as M = {M;, M, ..., Mg}. Main notations used
in this article are listed in Table I.

IV. METHODOLOGY

In this section, we present HGBER for learning compre-
hensive node representations. As shown in Fig. 2, it mainly
consists of three parts. First of all, the original heteroge-
neous graph is divided into multiple meta-specific graphs
according to the meta-paths. Secondly, bidirectional encoding
representation learning over meta-specific graphs is employed
for learning node representations, including two steps: con-
trastive forward encoding networks are firstly performed to
extract meta-level node representations corresponding to the
meta-paths. Then, multiple reversed encoding networks are
introduced to encode these meta-level node representations
into semantic-level node representations. Note that, due to
the associated nonlinear networks, more general relationships
among different meta-paths can be learned. Finally, the final
learned node representations are refined by a self-training
module for the next task.

A. Contrastive Forward Encoding Network

After decomposing the original heterogeneous graph into
multiple homogeneous meta-specific graphs according to
meta-paths, we utilize contrastive forward encoding networks

Uhttp://dl.acm.org/
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Tlustration of the proposed HGBER. The key component is the bidirectional encoding representation learning, which is composed of the contrastive

forward encoding networks for meta-level node representations and the reversed encoding networks for semantic-level node representations. The proposed
model jointly learns concise meta-level node representations for each meta-specific graph and comprehensive semantic-level node representations which can
be mapped to reconstruct each meta-specific graph. (a) Heterogeneous network. (b) Bidirectional encoding representation learning. (c) Task.

to obtain meta-level node representations corresponding to
each subgraph. Here two kinds of contrastive forward encod-
ing networks are considered in this article. The first one is
variational graph autoencoder (VGAE) [23], which uses GCN
to encode the node attribute information and reconstruct the
link information of the graph. The second one is the deep
graph informax (DGI) [26] model by introducing the theory
of maximizing mutual information. Being a self-supervised
method, DGI can also learn the node representations without
labels like VGAE. We introduce the details of the proposed
framework as follows.

1) Variational Graph Autoencoder: Given an undirected
unweight heterogeneous graph G = (V, £, X) with N nodes
and K meta-paths, we denote K homogeneous meta-specific
graphs as {G, G2, ..., Gk} and the adjacency matrix set as
A = {A, Ao, ..., A}, where Ay € RV*N corresponds to
the kth meta-specific graph. It is worth mentioning that all
meta-specific graphs share the same node attributes. Then,
taking a meta-path as an example, the corresponding VGAE
used in this article are parameterized as follows:

N
gMIX, A) = [[ami|X, A)

i=1

(1)

where g(m;|X, A) = N (m;|u;, diag(c?)), p = GCN, (X, A)
is the matrix of mean vectors u; same as logo = GCN, (X, A)
and M is the output of the VGAE model. The two-layer GCN
model is defined as

GCN(X, A) = AReLU(AX®,) ©, )

where © is the parameter matrix of GCN. And A =
D /2AD~'/? is normalized Laplace matrix, where D is the
diagonal matrix consisting of the row sums of A along its
diagonals. ReLU(*) = max(0, %) is the active function.
Given the attribute and adjacency matrices of a graph,
VGAE can encode them into the matrix of mean vectors
1 and variance vectors o. The learned representation m
can be sampled from the normal distribution determined by
these two factors. An inner product is used to constrain

two representation vectors, which can be seen as a decoding
process

N N
p(AM) =[] ] r(Aijim; m))

i=1 j=1

3)

where p(A;; = 1/lm;, m;) = sigmoid(m/ m;), sigmoid(x) is
the logistic sigmoid function. Therefore, we can minimize the
following variational lower bound

K
Li=3, E,(mxa,) [log p(AcIM,) ]
k=1

—KL[g (Mx[X, A)llpMo)]  (4)

where p(M) [[; Nm;]0,T) is a Gaussian prior.
KL[g(*)||p(*x)] is the Kullback-Leibler divergence between
q(x) and p(x).

VGAE model is performed for the corresponding meta-
specific graphs. Then we can obtain the meta-level represen-
tation set M = {M;, M,, ..., Mg}, where M; corresponds to
the kth meta-specific graph.

2) Deep Graph Informax: The DGI model applies mutual
information maximization theory to graph representation
learning. It can be expressed as a mapping function F.
We can obtain the meta-level representation set M
{M;,M,, ..., Mg}, where M; = F(X, A;) corresponds to
the kth meta-specific graph. My belongs to the space of RV %
where d; is the feature dimension.

In addition, the DGI model relies on maximizing local
mutual information. Taking a meta-path as an example, it con-
strains the learned meta-level node representations M to be
able to capture the global information of the corresponding
meta-specific graph. Firstly, taking ¢ (X, A) as the basic node
representation encoding network, the preliminary node repre-
sentations in the graph can be calculated. Note that ¢(X, A)
can be any suitable graph learning framework. In this article,
we still adopt the GCN framework with two layers. The
node representations are denoted M {m,my, ..., my}.
Then, the graph-level information is summarized as a vector
s through a global information encoder R(M). In particular,
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we perform a direct average function to aggregate the graph-
level information, which is represented by

N
s=RM) = g(% ;mi) 5)

where () is the logistic sigmoid function.

To constrain the maximum local mutual information, the
discriminator represented by D(x,s) is to determine positive
and negative samples taking the graph-level information vector
s as the baseline, where * is the sample representations to be
determined. D can be a binary classification network, and its
output are probability scores. Specifically, the positive sample
representations are defined as the original node representa-
tions M, and the negative ones M = {f, iy, ..., My} are
extracted from the reconstructed meta-specific graph repre-
sented by G with M nodes through a shuffle function C(G).
In our application, a direct function C is to shuffle the attribute
matrix of the graph G. The objective function is defined as a
binary cross-entropy loss as follows:

1 K N
L= m(z 2 Eo,[log D(my;. s0)]

k=1 i=1
K M
+ D> Egllog(1 — D(f, s6))] | (6)
k=1 j=I
By minimizing the above objective function, mutual infor-
mation can be maximized. The learned node representations
M are the meta-level node representations.

B. Reversed Encoding Network

After obtaining the meta-level node representation set M
of a heterogeneous graph, our goal is to learn comprehensive
node representations that combine all meta-paths. We denote
the semantic-level node representations as H € RN*4 where
d is the dimension of node features. To this end, the reversed
encoding networks realize the assumption that each meta-level
node representation M can be degraded from the compre-
hensive common semantic-level node representations H. The
three-layer fully connected neural networks are employed to
model the degradation process as shown in Fig. 2. Specifically,
we map H onto the meta-level node representation M, with
reversed encoding network MLP(H; ®;) = H;, where H; C
H is the reversed reconstruction features and ®;, is the weight
matrix. Then, combining multiple meta-paths, the objective of
reversed encoding networks is defined as

K
1 ] 2
Ly = Egan—HknF. (7

In our model, we jointly learn meta-level node repre-
sentations for each meta-specific graph and semantic-level
node representations using bidirectional encoding networks.
Its objective function can be summarized as

L=L+1L (8)

where 4 is a hyperparameter to balance the forward encoding
stage and reversed encoding stage. After optimizing the above

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 7, JULY 2024

objective function, we can obtain the semantic-level node
representations, which can aggregate information from each
meta-path and dock specific tasks.

C. Self-Training Module

The framework proposed above aggregates the informa-
tion of heterogeneous graphs (including node attributes, link
relationships and heterogeneous graph structure) into the
semantic-level node representations H. However, the node rep-
resentations obtained in this way are not necessarily optimal,
since they just follow the local structure of the original graph
data. And it is not rigorous that believing the distribution
of the original node attributes is optimal. We expect that
the learned semantic-level node representations H have better
structure and adaptively seek the optimal distribution, that
is, the nodes within the same category are gathered densely,
and the boundaries between different categories are distinct.
Therefore, it is worth adding some items to constrain the
distribution of nodes in the process of learning H. Inspired
by DCE [36], we introduce a self-training objective function
to optimize the node distribution. It is essentially a clustering
constraint that can be directly added to the objective function
as an item, so that the network can directly output a list of
categories, which is different from K-Means algorithm [37].
By utilizing highly confident nodes as soft labels to supervise
the learning process, the self-training scheme constraint H is
to minimize the following function

t4 .
L3 =KL[T||R] = t;i log =~ 9
3 = KL[T||R] ,Z;’gm ©)
where KL[T'||R] is the Kullback—Leibler divergence between
T and R. In addition, R is the distribution of the soft labels and
rij indicates the similarity measured by Student’s z-distribution
between node embedding h; and centroid u

_atl

(1+11h; — 511 /o)
> (U1 — gl /a)

where h; € H denotes the learned semantic-level node
representations, r;; can be interpreted as a soft clustering
assignment, a are the degrees of freedom of the Student’s
t-distribution. Due to the unsupervised setting, we set a = 1.
It is worth noting that in the first calculation, K-Means
clustering algorithm of H is required to initialize x. In (9),
tij is computed by the first raising r;; to the second power to
get a denser distribution

rij = GT_H (10)

o/ fi
Zj’ ’"zzj/f/

where f; = >, r;; is the soft cluster frequency. Further, the
final cluster label of node i can be obtained by the following:

lijj =

Y

c; = argmaxr;;. (12)
J

The distribution of R will be denser by minimizing (9).

Its training strategy is same as a form of self-training, and

the distribution 7 can be considered a target. This learning

Authorized licensed use limited to: Tiangong University. Downloaded on August 27,2024 at 02:38:04 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: HGBER: HETEROGENEOUS GRAPH NEURAL NETWORK WITH BIDIRECTIONAL ENCODING REPRESENTATION

manner can iteratively learn from high-confidence predictions
to improve the initial estimate and low confidence nodes.

Combining the contrastive forward encoding network,
reversed encoding network, and self-training module, the final
objective function can be summarized as

L=L1+ALy+7yLs (13)

where y and 4 are hyperparameters to balance three terms.
Our model has the following three merits: firstly, the intrin-
sic information of each meta-specific graph is automatically
extracted with the contrastive forward encoding networks.
Secondly, the degradation process involved in the reversed
encoding networks ensures the intrinsic information from
each meta-specific graph are encoded into the comprehen-
sive semantic-level node representations. Thirdly, it further
performs a self-training module to discover the optimal node
distribution. The above three merits of the proposed model
provide conditions for learning comprehensive common node
representations.

D. Model Optimization

The proposed method has the following variables to be
optimized: the weights © of the contrastive forward encoding
networks, the weights ® of the reversed encoding networks,
the cluster centers u in self-training part and the semantic-level
node representations H. We firstly pre-train the contrastive
forward encoding network to obtain the preliminary meta-level
representation set M. Then, we iteratively update parameters
of the reversed encoding network to acquire the preliminary
H. Further, the initial cluster centers u are obtained by per-
forming K-Means clustering algorithm on H. A self-training
module is employed to acquire the structure-preserving node
representations. Finally, the above steps are updated in turn to
obtain the optimal solution. More details are given as follows.

1) Update Contrastive Forward and Reversed Encoding
Networks: To update the contrastive forward and reversed
encoding networks, we just need minimize (8) using Adam
algorithm [38]. It is worth noting that the reversed encoding
network needs a better mapping target as initialization, so we
pre-train the DGI to obtain preliminary meta-level node repre-
sentations before updating the parameters of reversed encoding
networks. Specifically, taking the DBLP dataset as an example,
we pre-train both the GAE network and the DGI network
for 120 iterations. Then after randomly initializing H, joint
optimization can be performed. So far, we could obtain the
preliminary semantic-level node representations H.

2) Update Cluster Center u: The self-training part is a
structural constraint on the semantic-level node representations
H. The distribution of H can be changed with the optimization
process. To acquire a better initialized H, we update the
parameters of the entire network step by step. The above
process of obtaining the preliminary H can be regarded as
the initialization of the following step. In (9), the gradients of
L5 with respect to cluster center u are

aﬁg al 1
- 23 (U4 1k — @il )™ (rij — i) (hi = 7). (14)
J

i=1
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Algorithm 1 Model Training for HGBER
Require: Heterogeneous graph: G = (V, &, X), meta-paths:
0, LR Oy -- LN Ok+1;

Ensure: Node representations H and cluster labels;

1: Initialize the weights ® of the contrastive forward encod-
ing networks and ® of the reversed encoding networks,
semantic-level node representations H and cluster centers
s

: Adopt K-Means algorithm to obtain initial x;

: while not converge do

/I Training bidirectional encoding networks

Update weights of the forward encoding networks;

Update weights of the reversed encoding networks;

/I Self-training module for node representations

Update the cluster center u;

Calculate the target distribution T

Update the semantic-level node representations H;

: end while

return Node representations H and cluster labels.

R i A R o

—_ = =
» =2

Using the stochastic gradient descent (SGD) method [39],
the cluster center u can be updated by
0Ls

Hjp=pj—n——

(15)
opj

where 7 is the learning rate.

The next step is to update the target distribution 7. Accord-
ing to (10) and (11), the updated distribution 7 can be
calculated. The distributions 7" and R are updated alternately
by iterative optimization. In addition, we can also obtain the
cluster to which node belongs according to Q. The cluster
label corresponding to node i can be calculated by

Label; = argmaxr;; (16)
J

where r;; is obtained by (10). So far, the overall network
optimization process can be summarized as updating the para-
meters of DGI to obtain preliminary meta-features, updating
the parameters of the reversed encoding networks to obtain
preliminary semantic-level node representations H and updat-
ing the cluster center u and target distribution 7. To clarify,
we summarize the optimization process in Algorithm 1.

V. EXPERIMENTS

In this section, we conduct extensive experiments to ver-
ify the effectiveness of the proposed HGBER. Specifically,
we demonstrate its advantages over other methods in different
tasks, including node classification, node clustering, and visu-
alization of node representations. In addition, we also discuss
the obtained experimental results, verify, and analyze the role
of the various components of the proposed method.

A. Datasets

The following five public datasets are used to verify the
effectiveness of the proposed method.
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ACM?: ACM is a paper network contrived from the ACM
dataset using papers published in ACM Knowledge Discov-
ery and Data Mining (KDD), SIGMOD, SIGCOMM, Mobi-
COMM, and VLDB. ACM dataset consists of 3025 papers
(P), 5835 authors (A), and 56 subjects (S). The papers are
divided into three categories: database, wireless communica-
tion, data mining. Depending on the conferences linked to
the papers, we classify the papers into the appropriate cate-
gories. The attribute information of papers is extracted from
keywords. Two meta-paths PAP, PSP are extracted for use with
experiments.

DBLP3: DBLP is an integrated database of
English-language literature in the field of computer with
the results of research as the author as the core. In this
article, a subset of DBLP which consists of 14328 papers
(P), 4057 authors(A), 20 conferences(C), and 8789 terms(7)
is extracted. We divide the authors into four categories
according to their research areas: database, data mining,
machine learning, information retrieval. Depending on the
conferences linked to the authors, we classify the authors into
the appropriate research areas. The attribute information of
authors is extracted from keywords. Three meta-paths, APA,
APCPA, and APTPA are extracted for use with experiments.

IMDB*: IMDB is a link dataset built with permission from
the Internet Movie Data (IMDB). A subset of IMDB which
contains 4780 movies (M), 5841 actors (A), and 2269 directors
(D) is extracted. We divide the movies into three categories:
Action, Comedy, Drama according to their genre. The attribute
information of movies is extracted from plots. Two meta-paths
MAM, MDM are extracted for use with experiments.

Yelp’: The Yelp dataset contains 2614 businesses (B),
1286 users (U), two reviews (R), two services (§), and nine
rating levels (L). The business nodes are labeled by their
category. The node features are constructed by the bag-of-
words representation of the related keywords. Four meta-
paths, BUB, BRB, BSB, and BLB, are extracted for use with
experiments.

Aminer®: The Aminer dataset contains 6564 papers (P),
13329 authors (A), 35890 reference (R), which is a subset
extracted from the original dataset. The paper nodes are
divided into four classes. Two meta-paths PAP, PRP are
extracted for use with experiments.

The details of each dataset are summarized in Table II.

B. Comparison Method

To verify the effectiveness of the proposed method, we com-
pare HGBER with the following unsupervised and supervised
methods.

Unsupervised Methods:

1) DeepWalk [21]: DeepWalk is a random walk based
graph representation learning method. It is designed for

Zhttp://dl.acm.org/

3https://dblp.uni-trier.de

“http://komarix.org/ac/ds/

Shttps://www.yelp.com/dataset

Ohttps://github.com/librahu/HIN-Datasets-for-Recommendation-and-
Network-Embedding
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the homogeneous graph. Here we test all the meta-paths
for it and report the best performance.

2) Metapath2vec [7]: Metapath2vec is a heterogeneous
graph embedding method based on random walk and
skip-gram.

3) HERec [40]: HERec is a heterogeneous graph embed-
ding method. It introduces a type-constraint strategy to
filter the sequence of nodes, and learns node represen-
tations for each meta-path using skip-gram.

4) FeaCon-V: FeaCon-V method concatenates the features
of each meta-path learned from VGAE network.

5) FeaCon-D: FeaCon-D method concatenates the features
of each meta-path learned from DGI network.

6) HDGI [12]: HDGI is an unsupervised representation
learning method for heterogeneous graphs, which uses
the meta-path to modal the structure involving seman-
tics and utilizes semantic-level attention mechanism to
capture individual node local representations.

7) HEAD [41]: HEAD is an unsupervised representation
learning method, which introduces the adversarial dis-
entangler to separate the distinct, informative factors of
variations in node semantics formulated by meta-paths.

Supervised Methods:

1) GCN [14]: GCN is a semi-supervised graph convolu-
tional network designed for homogeneous graphs. Here
we test all the meta-paths for it and report the best
performance.

2) GAT [15]: GAT is a semi-supervised method for homo-
geneous graphs, which introduces an attention mecha-
nism. Here we test all the meta-paths for it and report
the best performance.

3) HAN [10]: HAN is a semi-supervised embedding
method for heterogeneous graphs that introduces two
levels of attention mechanism, and can be com-
bined with meta-specific graphs constructed by multiple
meta-paths for learning.

The Proposed Methods:

The proposed HGBERSs contains two variants as follows:

1) HGBER-V: The first variant of proposed HGBER is to
take the VGAE model as contrastive forward encoding
network.

2) HGBER-D: The second variant of proposed HGBER is
to take the DGI model as contrastive forward encoding
network.

C. Experimental Setup

For the unsupervised methods, node representations are
learned from the full dataset without label information. For
the supervised methods such as GCN, GAT, and HAN, all
datasets are divided into training set, validation set, and test
set according to the same ratio as in [10]. The logistic
regression (LR) classifier is employed as the basic classifier.
A tenfold cross-validation strategy is applied to evaluate all
comparison methods. Indicators Micro-F1 and Macro-FI are
used as metrics.

For the node clustering, the K-Means algorithm is per-
formed to verify the clustering performance of node repre-
sentations. The same ground truth as in the node classification
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TABLE 11
STATISTICS OF DATASETS
Dataset Node-type Nodes Edge-type Edges Feature Meta-path
Paper(P) 3025 Paper-Author 9744
ACM Author(A) 5835 P 4 . 1830 PAP
Subject(S) 56 Paper-Subject 3025 PSP
Movie(M) 4780 Movie-Act 14340
IMDB Actor(A) 5841 ovie-Actor 1232 MAM
Director(D) 2269 Movie-Director 4780 MDM
Author(A) 4057 Author-Paper 19645 APA
Paper(P) 14328 Paper-Conference 14328 APCPA
DBLP £ 5 334
Cor)r ererz;%(C) 87g9 Paper-Term 88420 APTPA
erm|
Bllljsigre(slsJ()B ) ?gég Business-User 30838 BUB
. Business-Review 2614 BRB
YELP Review(R) 2 . . 2614
Service(S) 3 Business-Service 2614 BSB
Level(L) 9 Business-Level 2614 BLB
Paper(P) 6564 ]
Aminer Author(4) 13329 Paper-Author 18007 128 PAP
Reference(R) 35890 Paper-Reference 58831 PRP
TABLE IIT
NODE CLASSIFICATION RESULTS
Dataset ACM DBLP IMDB YELP Aminer
Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
DeepWalk 0.738 0.741 0.862 0.848 0.483 0.453 0.694 0.498 0.633 0.619
Metapath2vec 0.736 0.738 0.906 0.908 0.488 0.451 0.718 0.508 0.639 0.606
HERec 0.738 0.739 0911 0.907 0.509 0.476 0.720 0.513 0.698 0.655
FeaCon-V 0.877 0.881 0.910 0.915 0.538 0.506 0.722 0.537 0.652 0.642
FeaCon-D 0.877 0.872 0911 0.888 0.533 0.423 0.727 0.529 0.637 0.664
HDGI 0.884 0.884 0.912 0.904 0.598 0.501 0.721 0.527 0.649 0.596
HEAD 0.870 0.872 0.913 0.910 0.573 0.490 0.746 0.550 0.775 0.659
GCN 0.883 0.882 0.917 0.908 0.546 0.518 0.721 0.525 0.766 0.617
GAT 0.871 0.873 0.919 0911 0.569 0.529 0.727 0.530 0.773 0.656
HAN 0.905 0.906 0.920 0.917 0.585 0.543 0.723 0.535 0.747 0.620
HGBER-V 0.923 0.915 0.927 0.918 0.599 0.551 0.731 0.534 0.830 0.687
HGBER-D 0.934 0.937 0.929 0.925 0.587 0.546 0.740 0.547 0.846 0.726

is adopted. Indicators such as clustering accuracy (ACC), nor-
malized mutual information (NMI), and adjusted rand index
(ARI) [42] are used as metrics, in which the accuracy used in
our clustering experiments is defined as

2.1z I (1, map(r;))
n

where r; and l; are predicted cluster label and ground-truth

label of sample x;, respectively. /" (x, y) = 1 if x = y, or oth-

erwise /'(x,y) = 0. map(-) is a permutation map function

mapping the cluster label into the class labels. Then the best

map can be obtained by Kuhn—Munkres algorithm [42].

In the visualization experiment, through mapping the rep-
resentations to a two-dimensional space, we draw the position
of each node in the two-dimensional coordinate system. Here
we utilize r-SNE [43] algorithm to visualize the author rep-
resentations on DBLP dataset and color the nodes based on
their research areas. As baselines, the original node attribute
features and the concatenated meta-level node representations
are selected for visualization. As comparisons, the node repre-
sentations learned by VGAE, DGI, Metapath2vec, and HDGI
are visualized.

ACC =

A7)

D. Results and Analysis

1) Node Classification: The results of the node classifica-
tion are shown in Table III. The best results of each indicator
are marked in bold. As an unsupervised representation learning
method, it can be observed that the proposed HGBERs (i.e.,

HGBER-V and HGBER-D) achieve the best results on 4 out
of 5 datasets. Specifically, as a traditional homogeneous graph
learning method, DeepWalk learns the node representations
over each meta-path, but it cannot combine semantic informa-
tion from different meta-paths, so it does not performs well
compared with heterogeneous graph representation methods,
e.g. Metapath2vec and HERec. With the powerful fitting abil-
ity of neural network, graph neural network-based methods,
FeaCon-V, FeaCon-D, HDGI, and HEAD, perform better than
the above traditional models on most datasets. Due to the use
of strong prior knowledge (i.e., label information), the super-
vised methods, such as GCN, GAT, and HAN, achieve better
results. The proposed HGBERs exceed these methods on most
datasets, which indicates its powerful capabilities of node rep-
resentations. It is worth mentioning the proposed HGBERs do
not outperform HEAD on YELP dataset, achieving the second
best results. The possible reason is that classes in YELP are
severely imbalanced (R:S:L:U:B = 2:2:9:1286:2614), so link
relationships between nodes in meta-specific graphs based
on BRB, BSB, and BLB meta-paths are too simple. The
obtained meta-level node representations are not discriminative
and cannot provide rich information to final semantic-level
node representations, while HEAD can learn discriminative
information from each meta-specific graph by utilizing the
adversarial learning manner. In addition, compared with HAN,
the proposed HGBERs with the bidirectional encoding repre-
sentation learning, capture the rich semantics successfully and
show their superiority. Through the above analysis, we can
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Fig. 3.

find that the proposed HGBERs could jointly learn concise
meta-level node representations for each meta-specific graph
and comprehensive common semantic-level node represen-
tations. For two variants, HGBER-V adopts the manner of
generative learning and needs to reconstruct the original graph
data. It tends to learn node-level features and is more suitable
for link prediction task. Unlike HGBER-V, HGBER-D adopts
the manner of contrastive learning and only needs to learn
semantic-level features to classify nodes. It is more suitable
for the tasks of node classification and graph classification.

2) Node Clustering: The results of the node clustering
experiment are shown in Table IV. The best results of each
indicator are marked in bold. It can be seen that the pro-
posed HGBERSs obtain the best performance on all datasets.
Especially on ACM, they have obvious advantages compared
with other methods. Specifically, without the aggregation of
meta-level node representations, DeepWalk method does not
achieve good results. It only performs well on DBLP, which
may be because the selected meta-path contains richer discrim-
inative node information. Two heterogeneous graph methods
Metapath2vec and HERec both have better performance in
terms of clustering NMI and ARI. Based on the graph neural
network, FeaCon-V, FeaCon-D, HDGI, and HEAD achieve
better results, which indicates that they could integrate node
attribute and link information of the heterogeneous graph.
Combining the advantages of the contrastive forward encoding
and reversed encoding networks, the proposed HGBERs gain
superior performance compared with other methods. To further
visualize the superiority of our model, we plot clustering ACC
on two datasets as boxplot shown in Fig. 3. It can be seen that
HGBER is superior to other methods and is more stable.

3) Visualization: To show the pros and cons of node rep-
resentations more intuitively, we conduct visualization experi-
ment as shown in Fig. 4. After mapping the representations to
a two-dimensional space, we draw the position of each node in

Boxplots of clustering results of different methods on DBLP and YELP datasets. (a) DBLP. (b) DBLP. (c) DBLP. (d) YELP. (e) YELP. (f) YELP.

the two-dimensional coordinate system. #-SNE [43] algorithm
is adopted to visualize node representations on DBLP dataset.
Each point in the figure indicates an author and its color repre-
sents the research area. As baselines, the original node attribute
features and the concatenated meta-level node representations
learned by VGAE and DGI are selected for visualization.
The node representations learned by Metapath2vec, HDGI,
HGBERsel, and HGBERs are also visualized. Specifically, the
Rawdata method shows the distribution of the original node
attributes. Its visual result is messy since the information used
is not comprehensive. Although VGAE and DGI show better
performance for four categories, but they still have messy
results. For two heterogeneous methods Metapath2vec and
HDGI, their results are much better, indicating that they can
fuse the graph structural information with the node attributes,
but there is no clear cluster boundary. From Fig. 4(f) and (g),
we can see that the distribution of node representations
presents an excellent effect that different classes are distributed
more clearly and compactly. Due to the use of the self-
training module, the nodes in the same cluster are more closely
compared with HGBERsel (i.e., the HGBER-D without the
self-training module), which verifies the effectiveness of node
distribution optimization.

4) Ablation Experiment: Taking the performance of
HGBER-D on the DBLP dataset as an example, we show
the clustering ACC and NMI of the ablation experiment in
Fig. 5 to verify the effectiveness of each part of the proposed
framework. The methods to participate in the comparison are
Rawdata, HGBERm1, HGBERm2, HGBERm3, HGBERse/,
and HGBER. HGBERse! is the HGBER-D without consider-
ing self-training module, which serves as a baseline to verify
the effectiveness of the self-training module. HGBERmI,
HGBERm2 and HGBERm3 correspond to three meta-paths
(i.e., APA, APCPA, and APTPA) based methods without
reversed encoding network. From Fig. 5, we can see that
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(e ® (8) (h)
Fig. 4. Visualization on DBLP. (a) Rawdata. (b) VGAE. (c¢) DGI. (d) Metapath2vec. (¢) HDGI. (f) HGBERsel. (g) HGBER-V. (h) HGBER-D.
TABLE IV
NODE CLUSTERING RESULTS
Dataset ACM DBLP IMDB YELP Aminer
Metric ACC  NMI ARI ACC  NMI ARI ACC  NMI ARI ACC  NMI ARI ACC  NMI ARI
DeepWalk 0.588 0.295 0.288 | 0.823 0.709 0.756 | 0.382 0.009 0.006 | 0.618 0.358 0.386 | 0.501 0.224 0.212
Metapath2vec | 0.589  0.311 0.310 | 0.756 0.713 0.785 | 0.387 0.012 0.017 | 0.629 0.355 0.387 | 0.506 0.308 0.256
HERec 0.633 0421 0.367 | 0.765 0.714 0.795 | 0.389 0.012 0.016 | 0.638 0.351 0401 | 0493 0.278 0.202
FeaCon-V 0.682 0.452 0404 | 0.723 0.571 0.556 | 0.428 0.044 0.039 | 0.632 0366 0402 | 0.505 0.301 0.221
FeaCon-D 0.786 0.536 0.521 | 0.804 0.568 0.565 | 0436 0.035 0.039 | 0.633 0370 0.399 | 0497 0.245 0.255
HDGI 0.718 0.544 0496 | 0.881 0.715 0.766 | 0.443 0.037 0.041 0.638 0.375 0401 | 0.506 0.281 0.237
HEAD 0.809 0.567 0435 | 0.889 0.716 0.734 | 0441 0.034 0.042 | 0.639 0380 0422 | 0.515 0.316 0271
HGBER-V 0.891 0.658 0.705 | 0.899 0.721 0.796 | 0447 0.047 0.046 | 0.653 0.387 0425 | 0.503 0.333 0.285
HGBER-D 0.893 0.659 0.707 | 0.884 0.718 0.785 | 0.451 0.048 0.046 | 0.658 0.375 0421 | 0.524 0.338 0.296
1 08 10 10
08 0.9 0.9
: 06 08 h/\/\ 08 \__\/\
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Fig. 5. Ablation experimental results on DBLP. (a) Clustering ACC.
(b) Clustering NMI.

HGBER-D achieves the best performance, indicating that the
proposed method can effectively aggregate the information of
various types of link relations and attributes of the node itself,
and optimize the distribution of node representations on the
basis of HGBERsel. Moreover, the average training time of
HGBER-D and DGI is 8.25 min versus 40.36 s under a linux
machine powered by an Intel(R) Core(TM) 19-9900k CPU at
3.60 GHz CPU and a GeForce RTX 2080 TI GPU cards.
Because we utilize three meta-paths on DBLP, compared
with DGI, the proposed HGBER-D consists of three forward
encoding network modules, three reversed encoding network
modules, and a self-training module in the experiments.

5) Dimension Analysis: To determine dimensions of the
meta-level and the semantic-level node representations, taking
HGBER-D as an example, we study the sensitivity of the
dimensional parameter and report clustering ACC on DBLP
dataset. As shown in Fig. 6, the 50-dimensional meta-level

(@ (b)

Fig. 6. Clustering accuracy on different dimensions of the node representa-
tions on DBLP. (a) Meta-level node representations. (b) Semantic-level node
representations.

node representations and the 60-dimensional semantic-level
node representations could achieve the best experimental
results. Note that the red dotted line represents the clustering
results by using the raw features of nodes.

6) Hyperparameter Sensitivity: We investigate the sensitiv-
ity of two main parameters in our algorithm, i.e., 4 and y
in (13). The parameter tuning on DBLP for our HGBER-D
is plotted as shown in Fig. 7. We tune the two parameters
from {0,0.1,0.2,0.3,...,0.9,1} and report the clustering
accuracy. In fact, for learning representation H, we tune A
from greater than zero. It can be observed that with the
increase of two parameters, the clustering accuracy is also
improved, which indicates that the effectiveness of bidirec-
tional encoding representation learning and self-training mod-
ule. When both 4 and y are set to 0.8, the accuracy reaches
the best.
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Fig. 7. Parameter sensitivity on DBLP.

VI. CONCLUSION

In this article, we investigated a novel and challenging prob-
lem of heterogeneous information fusion for heterogeneous
graph representation learning. Different from the existing
HGNNs methods that only consider the simple concatenation
or linear superposition relationships between different meta-
paths, we proposed HGBER, a general framework for hetero-
geneous graph representation learning by aggregating various
meta-paths, which aims to learn comprehensive node represen-
tations by using bidirectional encoding representation. Specif-
ically, HGBER first employs contrastive forward encoding to
extract node representations on a set of meta-specific graphs
corresponding to meta-paths, and then performs reversed
encoding to learn comprehensive node representations. More-
over, a self-training module is designed to discover the optimal
node distribution, so as to further improve the performance
of HGBER. The experimental results on five public datasets
demonstrate the effectiveness of the proposed method on node
classification and node clustering tasks.
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