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Abstract

We address the problem of disentangled representation learn-
ing with independent latent factors in graph convolutional
networks (GCNs). The current methods usually learn node
representation by describing its neighborhood as a perceptual
whole in a holistic manner while ignoring the entanglement of
the latent factors. However, a real-world graph is formed by
the complex interaction of many latent factors (e.g., the same
hobby, education or work in social network). While little ef-
fort has been made toward exploring the disentangled repre-
sentation in GCNs. In this paper, we propose a novel Inde-
pendence Promoted Graph Disentangled Networks (IPGDN)
to learn disentangled node representation while enhancing the
independence among node representations. In particular, we
firstly present disentangled representation learning by neigh-
borhood routing mechanism, and then employ the Hilbert-
Schmidt Independence Criterion (HSIC) to enforce indepen-
dence between the latent representations, which is effectively
integrated into a graph convolutional framework as a reg-
ularizer at the output layer. Experimental studies on real-
world graphs validate our model and demonstrate that our
algorithms outperform the state-of-the-arts by a wide margin
in different network applications, including semi-supervised
graph classification, graph clustering and graph visualization.

Introduction

Graph with a set of objects and their relationships is a sig-
nificant kind of data structure, which has been adopted in
various areas such as social networks (Hamilton, Ying, and
Leskovec 2017) and protein-protein interaction networks
(Fout et al. 2017). Graph convolutional networks (GCNs),
as a typical deep learning technique on graph data, have
attracted considerable attentions (Defferrard, Bresson, and
Vandergheynst 2016; Kipf and Welling 2017). GCNs extend
the traditional convolution operation to graph and it learns
the node representation by propagating its neighbor infor-
mation on graph. With the learned node representations, we
can perform various tasks on graphs such as node cluster-
ing, classification and link prediction (Zhang, Cui, and Zhu
2018; Wu et al. 2019)
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Despite the remarkable performance, the existing graph
convolutional networks generally learn node representa-
tions by absorbing the node’s neighborhood as a perceptual
whole, and the representations they have learned are prone
to over-smoothing faced by a deep GCNs (Li, Han, and Wu
2018). Yet graphs are usually formed by highly complex in-
teractions of many latent factors. For example, a person in
a social network usually connects with others for various
reasons (e.g., hobby, education and work), hence it simulta-
neously contains several partial information from its neigh-
bors. Generally speaking, latent factors can take into account
the nuances between the different parts of the neighborhood
and make node representations more informative. Further-
more, latent factors can enable to discover the underlying
structures in graph data, such as neighborhood and commu-
nity. Therefore, how to learn representations that capture de-
sired latent factors behind a graph is of great importance for
GCNs.

However, disentangling the latent factors behind a graph
has two main challenges. One is how to learn node dis-
entangled representations which need extract the different
parts of its neighborhood but not the whole. Yet graph has
numerous nodes and an unusually complex network struc-
ture. The other is how to encourage independence among
the learned latent factors. Taking social networks as an ex-
ample, although “roommate” and “classmate” are two dif-
ferent factors that lead people to connect each other, the
former is obviously a subset of the latter, hence they are
not sufficiently diversified and will inevitably result in re-
dundant representations. We argue that the representations
of latent factors should be good and different. Yet the rela-
tionship between these factors is usually very complicated
and nonlinear, and the solution needs to be differentiable so
as to support end-to-end training in GCNs. So it is of very
importance to encourage independence among the learned
latent factors. We notice that Ma et al. (Ma et al. 2019) pre-
sented a disentangled graph convolutional network to learn
disentangled node representations. However, they only con-
sider the disentangled representation learning while neglect-
ing the independence of the latent factors. Therefore, how to
learn representations that disentangle the latent factors with
desired independence property remains largely unexplored
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Figure 1: Illustration of the proposed IPGDN’s layer. It attempts to disentangle latent factors in the graph data, and simulta-
neously respects independence across different representations. To disentangle node u, IPGDN'’s layer first construct features
from different aspects of its neighbors via disentangled representation learning, then encourage the independence among la-
tent representations through minimize HSIC to obtain the final result. This example assumes that there are three latent factors,

corresponding to the three channels W1, Wy, W3,

in the field of graph convolutional networks.

In this paper, we propose Independence Promoted Graph
Disentangled Networks (IPGDN), a novel approach for dis-
entangled representation learning that can automatically dis-
cover the independent latent factors in graph data. Specifi-
cally, on the one hand, we present disentangled representa-
tion learning by neighborhood routing mechanism. On the
other hand, to enforce the independence among different la-
tent representations, our model minimize the dependence
among different representations with a kernel-based mea-
sure, in particular the Hilbert-Schmidt Independence Cri-
terion (HSIC). The node disentangled representation learn-
ing and independence regularization are jointly optimized
in a unified framework so that it finally leads to a better
graph disentangled representation. The experimental results
on benchmark datasets demonstrate the superb performance
of our approach on graph analytic tasks, including semi-
supervised node classification, node clustering, and graph
visualization.

We summarize the main contributions as follows:

e To our best knowledge, this is the first attempt to enforce
the independence property among different latent rep-
resentations in graph disentangled representation learn-
ing. We propose a novel independently regularized disen-
tanglement framework for graph convolutional network,
which represents topological structure and node content
into different latent factors.

e We present a kernel Hilbert-Schmidt Independence Cri-
terion to effectively measure dependence among different
latent representations, which can promote the quality of
disentangled representations of the graph.

e Experiments on benchmark graph datasets demonstrate
that our graph disentangled networks outperform the oth-
ers on three popular tasks.
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Graph Convolutional Networks

First, let us define some notations used throughout this pa-
per.LetG = (V, £, X) be an attributed information network,
where V denotes the set of n nodes and £ represents the set
of edges. X € R™*/ is a matrix that encodes all node at-
tribute information, and x; describes the attribute associated
with node i. We denote (u, v) € £ as an edge between nodes
u and v. Here we primarily focus on undirected graphs.

Graph convolutional networks generalize traditional con-
volutional neural networks to the graph domain. Though a
number of different GCNs methods have been proposed,
here we focus on a representative one proposed by Kipf and
Welling (Kipf and Welling 2017). Given a graph with adja-
cency matrix A and node feature matrix X, its propagation
rule is as follows:

H" = p(D 2 AD :HI- VW), (1)

where A is the adjacent matrix, A=A + I and D =
> j Aij. HO is the matrix of activations in the I-th layer,

and H(®) = X. p(-) is a non-linear activation function such
as ReLU and W(~1) are trainable parameters. The gen-
eral philosophy is that nodes should exchange information
with their immediate neighbors in each convolutional layer,
followed by applying learnable filters and some non-linear
transformation. This architecture can be trained end-to-end
using task-specific loss function, for example, the cross en-
tropy loss in semi-supervised node classification as follows:

C
Ecel = - Z ZYmclOg(?v,c),

veVl c=1

2)

where VL is the set of labeled n(ides, C' is the number of
classes, Y is the label matrix and Y = softmax(H®)) are
predictions of GCNs by passing the hidden representation in
the final layer H") to a softmax function.



IPGDN: the Proposed Model

This paper is concerned with independently disentangled
representations for processing graph data. As shown in Fig-
ure 1, we design our IPGDN’s layer simultaneously inte-
grating disentangled representation learning and indepen-
dence among different representations into an unified frame-
work. In this section, we firstly present a way of disentan-
gled representation learning in graph. Secondly, we propose
a measure of dependence across latent representations based
on HSIC. Thirdly, we introduce our IPGDN architecture:
the model to enhance independent representations in semi-
supervised classification task.

Disentangled Representation Learning

We assume that each node is composed of A indepen-
dent components, i.e., there are M latent factors (corre-
sponding to M channels) to be disentangled. Given nodes
x, € RS and {xv € RS : (u,v) € &} as input, we define
h, = [e],es,...,ep] € Rf as the hidden representations of

the node u, where e, € RM (1 < m < M) is the m-th
disentangled representation. The component e,,, is for de-
scribing the aspect of node w that are pertinent to the m-th
factor.

For anode 0 € {u} U {v : (u,v) € &}, to extract its
features from different aspects of its neighbors, we firstly
project its feature vector X,, into different subspaces as fol-
lows:

3

where W,,, € Rf 11X % and b,, € R are the parameters
of m-th channel. To ensure numerical stability and prevent
the neighbors with overly rich features, we use ¢ norm for
normalization as Ze /||, m ||2-

To comprehensively capture aspect m of node u, we need
to construct e,, from both z, ,,, and {z, ,, : (u,v) € £},
which can identify the latent factor and assign the neighbor
to a channel. Here we leverage neighborhood routing mech-
anism (Ma et al. 2019) as follows:

Zum+2
‘zum+2
(t)

pvm_

Zo,m = p(WmXO +b )

(t—1)

(u,v) GSpUm Zy,m

(t=1) ’
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(t)

vmem)

exp(z

M
2 im=
where iterationt = 1,2, ..., T p,, ,,, indicates the probability
that factor m is the reason why node u reaches neighbor v,
and satisfies p,, , > 0, Z _1 Puym = 1. Also, py.p, is the
probability that we should use neighbor v to construct e,,.

The neighborhood routing mechanism will iteratively infer
Dv,m and construct e,,.

(&)

Lexp(zl . ety

Independence across Latent Representations

To enhance the disentangled informativeness, we encourage
the representations of different factors to be of sufficient in-
dependence by using HSIC.
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For latent factors 1 < 4,5 < M,i # j, let e; and e;
be disentangled representations from two latent factors con-

5
talnlng L data points {(e; p,€;p) € X X y}flf , which are
jointly drawn from a probability distribution P, e,. ¢(e;)
and ¢ (e;) are functions that map e; € X and e; € ) to
kernel space F and €2 with respect to the kernel functions
k(€ips€iq) =< (d(eip), dleiq) > and s(ejp,€jq) =<
o(ejp), P(ejq) >. Note that F and Q are Reproducing
Kernel Hilbert Space (RKHS) on X and ), respectively. The
cross-covariance is a function that gives the covariance of
two random variables and defined as follows:

Cez‘,ej = Eez‘,ej [(¢(el) - /"Lei) ® (¢(ej) — Me; )]» (6)

where ® is the tensor product. Then, HSIC as the Hilbert-
Schmidt norm of the associated cross-covariance operator

Cei,ej is defined as follows:
2
HSIC(Pe, e, F, Q) = ||Ce, e || 1y » (7
where HA”HS = Ei’ja?j.

Accordingly, the empirical version of HSIC (Gretton et al.
2005) is given as follows:

HSIC(e;, e;) = (% — 1) *tr(KRSR), 8)
where K and S are the Gram matrices with k,, =
k(eip,€iq), Spg = S(€jp,€jq) Tij = 0ij — % centers

the Gram matrix to have zero mean in the feature space.
There are two main advantages to use the HSIC to measure
the dependence of representations. First, HSIC maps rep-
resentations into a reproducing kernel Hilbert space to mea-
sure their dependence such that correlations measured in that
space correspond to high-order joint moments between the
original distributions and more complicated (such as nonlin-
ear) dependence can be addressed. Second, this method is
able to estimate dependence between representations with-
out explicitly estimating the joint distribution of the random
variables. In our implementation we use the inner product
kernel function, i.e. K = e;e!, and promising performances
are achieved. Note that mlmmlzlng HSIC(e;, e;) enhances
the independence between K and S, which penalties the
consistency between kernel matrices from different latent
representation parameterized by different projection matri-
ces W.

Network Architecture

In this section, we describe the overall network architecture
of IPGDN for performing node-related tasks.

By using disentangled representation learning module, we
design the propagation of the first L layers’ output as fol-
lows:

h{) = dropout(h (h{~=Y {h{~Y : (u,v) € £})), ()

where h(!) denotes the output function of the I-th layer,
1 <1< L wue&Vand h;o) = X,. The dropout opera-
tion is appended after every layer and is enabled only during
training.



Algorithm 1: The Proposed IPGDN’s Layer

Input: x, € R/i-1:the feature vector of node u:
{x, € Rfi=1 : (u,v) € G}its neighbors’ features;
M :number of channels;

T'iterations of routing.

Output: h,, € Rft: node disentangled representations.

Param: W,,, € Rf-1% 1 b,, € R .

while each o € {u} U {v: (u,v) € G} do

for each m € M do

Calculate z,_,, by Eq. (3);
‘ Zo,m — zo,m/HZo,m”2~
end

end
while routing iterationt € T do
for each v € (u,v) € G do
| Calculate p''), by Eq. (5).
end
for each m € M do
‘ Update eﬁ,ﬁ) by Eq. (4).
end
end
while latent factors (i, j) € M do
Calculate dependence among representations by Eq.
(8);
Minimize Eq. (10).

end

h, +— the concatenation of eq, eo, ..., €.

To enhance that the learned representations are indepen-
dent, we incorporate the HSIC regularization at the L-th out-

put layer h{%) = [e(lL), egL), ey eg\/LI)], which is shown as fol-
lows:
Lreg =y, » HSIC(e[" ef),  (10)

ueVl e;F#e;
For semi-supervised classification task, the final layer of
the network architecture is a fully-connected layer as fol-
lows:

h(L+1) — (W(L+1))Th(L) 4 b(L+1)’ (11)

where transformation matrix W+ ¢ R/xC parame-
ters vector b(X+1) € RO,

Next, h(“+1) is passed to a softmax function to get the
predicted labels:

¥ = softmaz(hF+Y),

Then, we can use cross entropy loss L..; defined in Eq.
(2) as an objective function. Finally, we jointly minimize the
loss function by combining the above terms:

L= Ecel + )\Ereg (13)

where A is hyper-parameters that control the impact of
different regularizations. We compute the gradients via
back-propagation, and optimize the parameters with Adam
(Kingma and Ba 2014). Parameter A > 0 is a trade-off pa-
rameter. The overall process of IPGDN’s layer is shown in
Algorithm 1.

(12)
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To summarize, our approach has the following merits: (1)
The HSIC penalty is only based on the learned represen-
tation, i.e. network parameters—not additional assumptions.
(2) Both disentangled representation learning and indepen-
dence of different representations are addressed in an uni-
fied framework; (3) Our approach is easy to optimize with
the Adam, and since the value of our objective function con-
verges fast, the algorithm is effective for graph disentangled
representation.

Complexity Analysis for IPGDN Algorithm

In our model, operation of the IPGDN’s layer can be paral-
lelized across all nodes. Thus, it is highly efficient. The com-

putation complexity of our method is (9(|5 | ZZL:O fO +

VIS fODFO 4 (F0)2) + TS0, fO), where [€]
is the number of edges, |V| is the number of nodes, 7 is the
iteration times used in neighborhood routing mechanism and
fW is the dimensionality of the I-th hidden layer. It is worth
noting that our algorithm is linear with respect to the num-
ber of nodes and number of edges in the graph respectively,
which is in the same order as other GCNGs.

Independence Analysis of HSIC

In this section, we analyze theoretical properties of the
Hilbert-Schmidt Independence Criterion for enhancing in-
dependence among different representations. Whenever F,
) are RKHS with characteristic kernels k, s (in the sense
of (Fukumizu et al. 2008)), then HSIC( P, ,, F,2) = 0 if
and only if e; and e; are independent. Intuitively, a char-
acteristic kernel leads to an injective embedding of prob-
ability measures into the corresponding RKHS. The HSIC
is the squared RKHS distance between the embedded joint
distribution and the embedded product of the marginals. Ex-
amples of characteristic kernels are Gaussian RBF kernels
and Laplace kernels. HSIC is zero if two representations are
independent. Note that non-characteristic and non-universal
kernels can also be used for HSIC, although they may not
guarantee that all dependence is detected. Different kernels
incorporate distinctive prior knowledge into the dependence
estimation, and they focus HSIC on dependence of a certain
type. For instance, a linear kernel requires HSIC to seek only
second order dependence, whereas a polynomial kernel re-
stricts HSIC to test for dependences of its degree. In terms of
disentangled representation, to explore different latent fac-
tors behind a graph, we try to select independent representa-
tions that minimize HSIC by the inner product kernel.

Experiments

In this section, we empirically perform comparative evalua-
tion of IPGDN model against a wide variety of state-of-the-
arts on three node-related tasks: semi-supervise node classi-
fication, node clustering and graph visualization.

Experimental Setup

Datasets We conduct our experiments on three standard
citation network benchmark datasets, whose statistics are
listed in Table 1. Cora, Citeseer and Pubmed (Sen et al.



Table 1: Dataset statistics

Dataset Cora Citeseer Pubmed
Nodes 2708 3327 19717
Edges 5429 4732 44338
Classes 7 6 3
Features 1433 3703 500
Training Nodes 140 120 60
Validation Nodes 500 500 500
Test Nodes 1000 1000 1000

Table 2: Semi-supervised classification results (%).

. Datasets
Method Metrics Cora Citeseer Pubmed
MLP 55.1 46.5 71.4
ManiReg 59.5 60.1 70.7
SemiEmb 59.0 59.6 71.1
LP 68.0 45.3 63.0
DeepWalk 67.2 43.2 65.3
ICA 75.1 69.1 73.9
Planetoid ACC 75.7 64.7 77.2
ChebNet 81.2 69.5 75.0
GCN 81.4 71.2 79.0
MoNet 81.7 - 78.8
GAT 83.0 72.9 78.7
DisenGCN 83.7 73.2 80.5
IPGDN (our) 84.1 74.0 81.2
MLP 54.3 45.6 69.4
ManiReg 60.2 61.2 70.2
SemiEmb 57.9 59.1 70.0
LP 66.2 46.2 62.8
DeepWalk 70.3 51.5 66.1
ICA 74.8 70.2 74.3
Planetoid F1 73.6 63.5 77.0
ChebNet 80.9 66.2 75.5
GCN 81.2 71.1 78.8
MoNet 81.5 - 77.9
GAT 82.5 71.4 77.7
DisenGCN 83.6 72.0 80.9
IPGDN (our) 84.2 72.8 81.7

2008) are all for semi-supervised node classification and
node clustering. We follow the experimental setup of (Yang,
Cohen, and Salakhutdinov 2016). In all of these datasets,
nodes correspond to documents and edges to (undirected)
citations. Node features correspond to elements of a bag-of-
words representation of a document. Each node has a class
label, i.e., research area. We allow for only 20 nodes per
class to be used for training. The predictive power of the
trained models is evaluated on 1000 test nodes, and we use
500 additional nodes for validation purposes (the same ones
as used by (Kipf and Welling 2017; Velickovi€ et al. 2017)).

Baselines We compare with some state-of-the-art base-
lines, including node embedding methods and graph neural
network based methods, to verify the effectiveness of the
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proposed IPGDN.

e MLP: It is a multi-layer perception as a baseline.

e ManiReg (Belkin, Niyogi, and Sindhwani 2006): It is
a semi-supervised learning model base on manifold regular-
ization which allows to exploit the geometry of the marginal
distribution.

e SemiEmb (Weston et al. 2012):1t is a semi-supervised
embedding learning model incorporating deep learning tech-
niques.

e LP (Zhu, Ghahramani, and Lafferty 2003) : It is a la-
bel propagation approach based on a Gaussian random field
model.

e DeepWalk (Perozzi, Al-Rfou, and Skiena 2014): A ran-
dom walk based network embedding method for graph.

e ICA (Lu and Getoor 2003): It is a link-based classifica-
tion method which supports discriminative models describ-
ing both the link distributions and the attributes of linked
objects.

e Planetoid (Yang, Cohen, and Salakhutdinov 2016): This
model is an inductive, embedding based approach to semi-
supervised learning. It uses the graph structure as a form of
regularization during training while not using graph struc-
tural information during inference.

e ChebNet (Defferrard, Bresson, and Vandergheynst
2016): It is a spectral graph convolutional network by means
of a Chebyshev expansion of the graph Laplacian, removing
the need to compute the eigenvectors of the Laplacian and
yielding spatially localized filters.

e GCN (Kipf and Welling 2017): It is a simple yet effec-
tive ChebNet model by restricting the filters to operate in a
1-step neighborhood around each node.

e MoNet (Monti et al. 2017): This model is an extended
CNN architectures by learning local, stationary, and compo-
sitional task-specific features for non-Euclidean data.

o GAT (Velickovi¢ et al. 2017): It enhances GCN by intro-
ducing multi-head self-attention to assign different weights
to different neighbors.

e DisenGCN (Ma et al. 2019): This model is a graph con-
volutional network which tries to disentangle the latent fac-
tors among the complex graph by a neighborhood routing
mechanism.

Implementation Details In semi-supervised classifica-
tion tasks, for a simple completion, we set the output di-
mension of DisenGCN and IPGDN’s layer is a constant, i.e.
M x A f is the same in each layer, where M is the number of
channels used by the layer and A f is the output dimension
of each channel. In node clustering task, we follow GAT and
set the output dimension of a graph neural network to be 64.
For DeepWalk method, we set window size to 5, walk length
to 100, walks per node to 40 and the number of negative
samples to 5. In our model, we use K = 4, A f = 16 for the
test. Following (Ma et al. 2019), we set iterations of neigh-
bourhood routing 7" = 7. We then tune the hyper-parameters
of both our model’s and our baselines’ automatically using
hyperopt (Bergstra, Yamins, and Cox 2013). Specifically,
we run hyperopt for 200 trials for each setting, with the
hyper-parameter search space specified as follows: the learn-
ing rate «~ loguniform [e~%, 1], the ¢ regularization term «
loguniform[e~19, 1], dropout rate € {0.05,0.10, ...,0.95},



Table 3: Node clustering results(%).

Datasets Metrics SemiEmb DeepWalk Planetoid ChebNet GCN GAT DisenGCN IPGDN
ACC 60.8 62.2 67.2 71.9 73.5 752 75.5 76.1
NMI 48.7 50.3 52.0 49.8 51.7 570 584 59.2
Cora ARI 41.5 40.8 40.5 424 489 541 60.4 61.0
Precision 21.6 22.6 24.0 27.6 28.5 237 27.1 28.1
Fl1 24.3 21.8 25.0 25.9 256 236 24.8 25.3
ACC 51.1 52.1 61.0 65.0 67.7 68.0 68.2 68.9
NMI 31.2 30.5 41.2 42.6 42.8  43.1 43.7 44.3
Citeseer ARI 21.5 20.6 22.1 41.5 428 436 42.5 43.0
Precision 22.9 23.6 20.9 21.6 20.5  21.1 23.8 23.9
Fl 20.0 17.0 19.5 20.8 199 203 22.6 23.2
ACC 62.3 65.2 64.6 75.2 75.6 763 77.0 77.8
NMI 27.8 29.6 32.5 35.6 350 35.0 36.1 37.0
Pubmed ARI 352 36.6 33.9 38.6 409 414 41.6 42.0
Precision 21.3 28.3 30.0 29.0 325 345 33.6 34.0
Fl1 26.1 259 28.9 31.3 29.8 303 31.2 32.1

the number of layers L € {1,2,...,6}. Then with the best
hyper-parameters on the validation sets, we report the av-
eraged performance of 50 runs on each semi-supervised
dataset, and 30 runs in node clustering task.

Classification Analysis

We report the results in Table 2. From the Table 2, we can see
that IPGDN achieves the best performance in term of clas-
sification Accuracy (ACC) and F-score (F1). More specif-
ically, on the one hand, disentangled approaches, i.e. both
DisenGCN and our model, outperform holistic approaches
such as ChebNet, GCN and GAT, which indicates that the
disentangled feature is helpful for graph representation. On
the other hand, we are able to improve upon DisenGCN by
a margin of 1.7%, 0.9% and 1.7% on Cora, Citeseer and
Pubmed respectively, suggesting that encouraging indepen-
dence between latent factors may be beneficial.

Clustering Analysis

To further evaluate the embeddings learned from the above
algorithms, we also conduct the clustering task. For all the
compared algorithms, we obtain its node embedding via feed
forward when the model is trained. Then we use the KMeans
to perform node clustering and the number of clusters K
is set to the number of classes. The same ground-truth as
in node classification analysis is utilized. Following (Pan
et al. 2018), we employ five metrics to validate the cluster-
ing results: Accuracy (ACC), Normalized Mutual Informa-
tion (NMI), Precision, F-score (F1) and Average Rand Index
(ARI). Since the performance of KMeans is affected by ini-
tial centroids, we repeat the process for 20 times and report
the average results in Table 3.

As can be seen in Table 3, we can see that IPGDN per-
forms consistently much better than all baselines. Also,
graph neural network based algorithms usually achieve bet-
ter performance. Besides, with the constraint of indepen-
dence, IPGDN performs significantly better than DisenGCN
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. It shows that the proposed IPGDN can learn a more mean-
ingful node embedding via enforcing independence between
latent representations.

Visualization

To present a better intuitively comparation, we provide a vi-
sualization of the t-SNE (Maaten and Hinton 2008) trans-
formed feature representations. Specifically, we learn the
node embedding based on the proposed model and project
the learned embedding into a 2-dimensional space. Here we
utilize ¢-SNE to visualize the author embedding on Cora
dataset and coloured the nodes based on their research ar-
eas.

Base on Figure 2, we can see that [IPGDN performs much
better than other graph neural networks and slightly better
than DisenGCN. It demonstrates that the embedding learned
by IPGDN has high intra-class similarity and separates the
article in different research area with distinct boundaries by
encouraging independence among different latent represen-
tations. On the contrary, GCN and GAT which get holistic
feature from their neighbors do not perform well. The au-
thors belong to different research areas are mixed with each
other.

Hyperparameter Sensitivity

We show parameter adjustment and algorithm convergence
on Cora as an example in Figure 3 and 4, respectively. From
the Figure 3, it can be seen that the parameter of inde-
pendence term is relatively robust since the performance is
stable while A is chosen in a wide range. Specifically, the
promising performance can be expected when the parameter
A is given in a range (e.g., [107°,107]). Yet the classifica-
tion performance decreases dramatically when the value of A
exceeds a upper limit (e.g., 1.25 x 10~5), which demonstrate
that it is not good to overemphasize the independence be-
tween latent factors. From Figure 4, we can see that [IPGDN
converges within a small number of iterations, which empir-
ically proves the efficiency of our model.



N
(b) GAT (c) DisenGCN (d) IPGDN

Figure 2: Visualization embedding on Cora. Each point indicates one author and its color indicates the research area. We can
see that the embedding learned by IPGDN has high intra-class similarity and separates articles in different research area with
distinct boundaries by encouraging independence among different latent representations.
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Figure 3: Parameter tuning on datasets.
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Figure 4: Convergence results on datasets.

Related work

Inspired by the huge success of convolutional networks in
the computer vision domain, recently there has been a large
number of methods trying to apply convolution on non-
Euclidean graph data. These approaches are under the um-
brella of graph convolutional networks. Generally speaking,
GCNs fall into two categories:spectral-based and spatial-
based. Bruna et al. (Bruna et al. 2014) propose the fist promi-
nent work on GCNs, which designs a variant of graph convo-
lution in the light of spectral graph theory. Subsequently, a
large of increasing improvements, extensions, and approx-
imations on spectral-based graph convolutional networks
(Defferrard, Bresson, and Vandergheynst 2016; Kipf and
Welling 2017; Levie et al. 2018) have been proposed. As
spectral methods usually deal with the whole graph simul-
taneously and are hard to scale or parallel to large graphs,
spatial-based graph convolutional networks have rapidly
developed recently (Hamilton, Ying, and Leskovec 2017;
Monti et al. 2017; Gao, Wang, and Ji 2018). These ap-
proaches directly formulate graph convolutions as aggregat-
ing feature information from neighbors in the graph domain.
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Furthermore, their computation can be largely decreased to-
gether with sampling strategies, which can be performed in a
batch of nodes instead of the whole graph (Hamilton, Ying,
and Leskovec 2017; Gao, Wang, and Ji 2018). Hence, they
have the potential to improve efficiency.

Another line of works related to ours is the disentan-
gled representation learning. Early works that have demon-
strated disentanglement in limited settings include (Des-
jardins, Courville, and Bengio 2012), and several prior re-
searches have addressed the problem of disentanglement in
supervised or semi-supervised settings (Kingma et al. 2014;
Kulkarni et al. 2015). Recently, disentangled representa-
tion learning has gained considerable attention, in particu-
lar in the field of image representation learning (Alemi et
al. 2016). It is designed for learning representations to sep-
arate the explanatory factors of variations behind the data.
These representations have proven to be more resilient to
complex variants (Bengio, Courville, and Vincent 2013) and
can enhance enhanced generalization capabilities and im-
prove the robustness of confrontational attacks (Alemi et
al. 2016). Furthermore, The disentangled representations are
inherently easier to interpret and hence may be helpful for
debugging and auditing (Doshi-Velez and Kim 2017). More
recently, there are several recent works that constrain the
form of this decomposition to capturing purely independent
factors of variation in unsupervised generative models (Cao
et al. 2015; Chen et al. 2018; Kim and Mnih 2018). They
typically evaluate the disentanglement using purpose-built,
artificial, data and their generative factors are themselves in-
dependent by construction. However, these approaches are
mainly applied to traditional data but not to graph data.

Conclusions

In this paper, we propose a novel independence promoted
graph disentangled networks for graph representations. In
our approach, disentangled representation learning and in-
dependence measure among latent representations are inte-
grated into a unified framework. Specifically, we present a
HSIC scheme to regularize latent representations and en-
force them to be independent. The regularized module is
jointly learned with a graph convolutional networks to pro-
duce the informative representations. Experimental results
demonstrate that our algorithm IPGDN outperform the state-



of-the-arts in several graph node-related tasks.
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